Show simple item record

dc.contributor.advisorSeidel, Paul
dc.contributor.authorLarge, Tim
dc.date.accessioned2022-01-14T14:58:22Z
dc.date.available2022-01-14T14:58:22Z
dc.date.issued2021-06
dc.date.submitted2021-08-18T14:48:42.684Z
dc.identifier.urihttps://hdl.handle.net/1721.1/139233
dc.description.abstractThis thesis constructs stable homotopy types underlying symplectic Floer homology, realizing a program proposed by Cohen, Jones and Segal twenty-five years ago. We work in the setting of Liouville manifolds with a stable symplectic trivialization of their tangent bundles, where we prove that the moduli spaces of Floer trajectories are smooth and stably framed. We then develop a basic TQFT formalism, in the stable homotopy category, for producing operations on these Floer homotopy types from families of punctured Riemann surfaces. As a byproduct, we can generalize many familiar algebraic constructions in traditional Floer homology over the integers to Floer homotopy theory: among them symplectic cohomology, wrapped Floer cohomology, and the Donaldson-Fukaya category.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleSpectral Fukaya Categories for Liouville Manifolds
dc.typeThesis
dc.description.degreePh.D.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
mit.thesis.degreeDoctoral
thesis.degree.nameDoctor of Philosophy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record