Experimental Demonstration of Lindblad Tomography on a Superconducting Quantum Device
Author(s)
Samach, Gabriel Orr
DownloadThesis PDF (11.49Mb)
Advisor
Oliver, WIlliam D.
Terms of use
Metadata
Show full item recordAbstract
Information loss in experimental quantum devices is traditionally characterized using metrics such as T₁ and T₂, which are readily accessible from standard time-domain measurement. While T₁ and T₂ times provide rough heuristics for interaction between single qubits and their lossy environments, these numbers stand in as mere proxies for the full multi-qubit loss channel of interest, which can be described more fully with a Lindbladian operator in the master equation formalism. In this thesis, I outline and present the results of the first experimental demonstration of Lindblad Tomography, a novel technique for tomographically reconstructing the Hamiltonian and Lindbladian operators of an arbitrary quantum channel from an ensemble of time-domain measurements. Starting from a theoretically minimal set of assumptions, I show that this method is resilient to state-preparation and measurement (SPAM) errors and places strong bounds on the degree of non-Markovianity in the channel of interest. Comparing the results for single- and two-qubit tomography of a superconducting quantum processor, I demonstrate how Lindblad Tomography can be used to identify sources of crosstalk on large quantum processors, particularly in the presence of always-on qubit-qubit interactions.
Date issued
2021-06Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology