MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Homotopy Theory of Stratified Spaces

Author(s)
Haine, Peter J.
Thumbnail
DownloadThesis PDF (472.1Kb)
Advisor
Barwick, Clark
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This thesis is broken into two parts. In the first part (Chapters 2 to 6) is dedicated to proving a 'homtopy hypothesis' for stratified spaces. Specifically, given a poset P, we show that the ∞-category Strₚ of ∞-categories with a conservative functor to P can be obtained from the ordinary category of P-stratified topological spaces by inverting a class of weak equivalences. For suitably nice P-stratified topological spaces, the corresponding object of Strₚ is the exit-path ∞-category of MacPherson, Treumann, and Lurie. To prove this stratified homotopy hypothesis, we define combinatorial simplicial model structure on the category of simplicial sets over the nerve of 𝑃 whose underlying ∞-category is the ∞-category Strₚ. This model structure on P-stratified simplicial sets allows us to easily compare other theories of P-stratified spaces to ours and deduce that they all embed into ours. The second part (Chapters 7 to 9) explores a number of consequences of this stratified homotopy hypothesis, as well as related results on exit-path ∞-categories and constructible sheaves. This includes an overview of our joint work with Bariwck and Glasman on exit-path categories in algebraic geometry; this work uses as input the perspective on stratified spaces provided by our stratified homotopy hypothesis.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/139376
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.