Show simple item record

dc.contributor.advisorBarwick, Clark
dc.contributor.authorHaine, Peter J.
dc.date.accessioned2022-01-14T15:07:53Z
dc.date.available2022-01-14T15:07:53Z
dc.date.issued2021-06
dc.date.submitted2021-05-25T12:46:58.338Z
dc.identifier.urihttps://hdl.handle.net/1721.1/139376
dc.description.abstractThis thesis is broken into two parts. In the first part (Chapters 2 to 6) is dedicated to proving a 'homtopy hypothesis' for stratified spaces. Specifically, given a poset P, we show that the ∞-category Strₚ of ∞-categories with a conservative functor to P can be obtained from the ordinary category of P-stratified topological spaces by inverting a class of weak equivalences. For suitably nice P-stratified topological spaces, the corresponding object of Strₚ is the exit-path ∞-category of MacPherson, Treumann, and Lurie. To prove this stratified homotopy hypothesis, we define combinatorial simplicial model structure on the category of simplicial sets over the nerve of 𝑃 whose underlying ∞-category is the ∞-category Strₚ. This model structure on P-stratified simplicial sets allows us to easily compare other theories of P-stratified spaces to ours and deduce that they all embed into ours. The second part (Chapters 7 to 9) explores a number of consequences of this stratified homotopy hypothesis, as well as related results on exit-path ∞-categories and constructible sheaves. This includes an overview of our joint work with Bariwck and Glasman on exit-path categories in algebraic geometry; this work uses as input the perspective on stratified spaces provided by our stratified homotopy hypothesis.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleOn the Homotopy Theory of Stratified Spaces
dc.typeThesis
dc.description.degreePh.D.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.orcidhttps://orcid.org/0000-0002-6662-2035
mit.thesis.degreeDoctoral
thesis.degree.nameDoctor of Philosophy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record