MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Mathematics
  • Henry Cohn
  • Data
  • View Item
  • DSpace@MIT Home
  • Department of Mathematics
  • Henry Cohn
  • Data
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computer-assisted proof of kernel inequalities

Author(s)
Cohn, Henry; Kumar, Abhinav; Miller, Stephen D.; Radchenko, Danylo; Viazovska, Maryna
Thumbnail
Downloaddata set contents (76.86Kb)
Download all files as a METS zip archive.
Additional downloads
constructions.sage (10.14Kb)
kernels.sage (13.92Kb)
middle.sage (4.951Kb)
nonsingular.sage (2.521Kb)
nonsingular24dtrunc.sage (4.457Kb)
processcorner.sage (4.420Kb)
processcorner24dtrunc.sage (7.938Kb)
rectangles.sage (2.617Kb)
setup.sage (20.83Kb)
verifyall.sage (7.274Kb)
numerics.pdf (331.2Kb)
Mathematica.tar (49.20Mb)
Metadata
Show full item record
Abstract
This data set provides a computer-assisted proof for the kernel inequalities needed to prove universal optimality in the paper "Universal optimality of the E_8 and Leech lattices and interpolation formulas" (by Cohn, Kumar, Miller, Radchenko, and Viazovska). It includes both our original proof using Mathematica and a revised proof using Sage.
Date issued
2022-03-16
URI
https://hdl.handle.net/1721.1/141226

Collections
  • Data

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.