MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uniform Sampling over Level Sets

Author(s)
Chiu, Erica
Thumbnail
DownloadThesis PDF (7.861Mb)
Advisor
Solomon, Justin
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
In this thesis, we present an MCMC-based method to extract near-uniform samples from a level set of a provided function 𝑓 : Rᵈ → Rᵏ . We propose a sequence of unnormalized distributions over Rᵈ with asymptotic convergence to the Hausdorff measure of the level set, therefore resulting in uniform samples. Beyond our formulation’s asymptotic convergence, we demonstrate its practicality by using MCMC to sample a distribution in the sequence for some analytical functions. Finally, we test our sampling method on representative applications related to machine learning, including extracting geometry from neural implicit representations and multi-objective optimization.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/144987
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.