MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Proximal Gradient Algorithms for Gaussian Variational Inference:Optimization in the Bures–Wasserstein Space

Author(s)
Diao, Michael Ziyang
Thumbnail
DownloadThesis PDF (864.7Kb)
Advisor
Moitra, Ankur
Chewi, Sinho
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Variational inference (VI) seeks to approximate a target distribution π by an element of a tractable family of distributions. Of key interest in statistics and machine learning is Gaussian VI, which approximates π by minimizing the Kullback–Leibler (KL) divergence to π over the space of Gaussians. In this work, we develop the (Stochastic) Forward-Backward Gaussian Variational Inference (FB–GVI) algorithm to solve Gaussian VI. Our approach exploits the composite structure of the KL divergence, which can be written as the sum of a smooth term (the potential) and a non-smooth term (the entropy) over the Bures–Wasserstein (BW) space of Gaussians endowed with the Wasserstein distance. For our proposed algorithm, we obtain state-of-the-art convergence guarantees when π is log-smooth and log-concave, as well as the first convergence guarantees to first-order stationary solutions when π is only log-smooth. Additionally, in the setting where the potential admits a representation as the average of many smooth component functionals, we develop and analyze a variance-reduced extension to (Stochastic) FB–GVI with improved complexity guarantees.
Date issued
2023-06
URI
https://hdl.handle.net/1721.1/151664
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.