Show simple item record

dc.contributor.advisorMoitra, Ankur
dc.contributor.advisorChewi, Sinho
dc.contributor.authorDiao, Michael Ziyang
dc.date.accessioned2023-07-31T19:57:22Z
dc.date.available2023-07-31T19:57:22Z
dc.date.issued2023-06
dc.date.submitted2023-06-06T16:35:08.204Z
dc.identifier.urihttps://hdl.handle.net/1721.1/151664
dc.description.abstractVariational inference (VI) seeks to approximate a target distribution π by an element of a tractable family of distributions. Of key interest in statistics and machine learning is Gaussian VI, which approximates π by minimizing the Kullback–Leibler (KL) divergence to π over the space of Gaussians. In this work, we develop the (Stochastic) Forward-Backward Gaussian Variational Inference (FB–GVI) algorithm to solve Gaussian VI. Our approach exploits the composite structure of the KL divergence, which can be written as the sum of a smooth term (the potential) and a non-smooth term (the entropy) over the Bures–Wasserstein (BW) space of Gaussians endowed with the Wasserstein distance. For our proposed algorithm, we obtain state-of-the-art convergence guarantees when π is log-smooth and log-concave, as well as the first convergence guarantees to first-order stationary solutions when π is only log-smooth. Additionally, in the setting where the potential admits a representation as the average of many smooth component functionals, we develop and analyze a variance-reduced extension to (Stochastic) FB–GVI with improved complexity guarantees.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleProximal Gradient Algorithms for Gaussian Variational Inference:Optimization in the Bures–Wasserstein Space
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record