Show simple item record

dc.contributor.authorGadepally, Vijay
dc.contributor.authorKepner, Jeremy
dc.date.accessioned2023-11-09T20:24:32Z
dc.date.available2023-11-09T20:24:32Z
dc.date.issued2023-11-09
dc.identifier.urihttps://hdl.handle.net/1721.1/152932
dc.description.abstractAI1 requires data. A core requirement for AI techniques to be successful is high quality data. Hence, preparing systems to be “AI Ready” involves collecting raw data and parsing it. There are simple techniques that can be applied during initial parsing of raw data that can dramatically reduce the effort of applying AI. This document provides a short list of a few best practices for preparing the data.en_US
dc.language.isoen_USen_US
dc.rightsAttribution-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjectArtificial Intelligenceen_US
dc.subjectData Architectureen_US
dc.subjectBest Practicesen_US
dc.titleSimple Data Architecture Best Practices for AI Readinessen_US
dc.typeWorking Paperen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record