MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Algorithms for Mixtures of Linear Dynamical Systems: A Practical Approach

Author(s)
Kumar, Nitin A.
Thumbnail
DownloadThesis PDF (708.4Kb)
Advisor
Moitra, Ankur
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
In this work, we give the first implementation of an algorithm to learn a mixture of linear dynamical systems (LDS’s), and an analysis of algorithms to learn a single linear dynamical system. Following the work of Bakshi et al. ([1]), we implement a recent polynomial-time algorithm based on a tensor decomposition with learning guarantees in a general setting, with some simplifications and minor optimizations. Our largest contribution is giving the first expectation-maximization (E-M) algorithm for learning a mixture of LDS’s, and an experimental evaluation against the Tensor Decomposition algorithm. We find that the E-M algorithm performs extremely well, and much better than the Tensor Decomposition algorithm. We analyze performance of these and other algorithms to learn both a single LDS and a mixture of LDS’s under various conditions (such as how much noise is present) and algorithm settings.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156785
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.