Show simple item record

dc.contributor.advisorMoitra, Ankur
dc.contributor.authorKumar, Nitin A.
dc.date.accessioned2024-09-16T13:48:59Z
dc.date.available2024-09-16T13:48:59Z
dc.date.issued2024-05
dc.date.submitted2024-07-11T14:36:37.121Z
dc.identifier.urihttps://hdl.handle.net/1721.1/156785
dc.description.abstractIn this work, we give the first implementation of an algorithm to learn a mixture of linear dynamical systems (LDS’s), and an analysis of algorithms to learn a single linear dynamical system. Following the work of Bakshi et al. ([1]), we implement a recent polynomial-time algorithm based on a tensor decomposition with learning guarantees in a general setting, with some simplifications and minor optimizations. Our largest contribution is giving the first expectation-maximization (E-M) algorithm for learning a mixture of LDS’s, and an experimental evaluation against the Tensor Decomposition algorithm. We find that the E-M algorithm performs extremely well, and much better than the Tensor Decomposition algorithm. We analyze performance of these and other algorithms to learn both a single LDS and a mixture of LDS’s under various conditions (such as how much noise is present) and algorithm settings.
dc.publisherMassachusetts Institute of Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleLearning Algorithms for Mixtures of Linear Dynamical Systems: A Practical Approach
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record