MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and Analysis of a Transformer-Based Solid-State Relay

Author(s)
Mondal, Neelambar
Thumbnail
DownloadThesis PDF (4.425Mb)
Advisor
Perreault, David J.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Automatic Test Equipment (ATE) systems require relays to perform complex high-speed tests on semiconductor devices. However, existing relays all come up short in some aspect. Electromechanical reed relays have a limited lifetime and slow switching speeds, while solid-state photoMOS relays have high on-resistance and low bandwidth. This thesis presents the design, simulation, and analysis of a new solid-state relay tailored for ATE applications. We use Analog Devices’ iCoupler technology to design this relay, relying on on-chip transformers to provide reliable input-to-output isolation. In Cadence simulations, the iCoupler relay achieves 100 mOhm on-resistance, 7.5 us turn-on time, and 4.8 GHz output 3dB bandwidth.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/157012
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.