MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scaling laws for electron kinetic effects in tokamak scrape-off layer plasmas

Author(s)
Power, D.; Mijin, S.; Wigram, Mike; Militello, F.; Kingham, R.
Thumbnail
Download23ja123_full.pdf (686.1Kb)
Metadata
Show full item record
Abstract
Tokamak edge (scrape-off layer (SOL)) plasmas can exhibit non-local transport in the direction parallel to the magnetic field due to steep temperature gradients. This effect along with its consequences has been explored at equilibrium for a range of conditions, from sheath-limited to detached, using the 1D kinetic electron code SOL-KiT, where the electrons are treated kinetically and compared to a self-consistent fluid model. Line-averaged suppression of the kinetic heat flux (compared to Spitzer-Härm) of up to 50% is observed, contrasting with up to 98% enhancement of the sheath heat transmission coefficient, γe. Simple scaling laws in terms of basic SOL parameters for both effects are presented. By implementing these scalings as corrections to the fluid model, we find good agreement with the kinetic model for target electron temperatures. It is found that the strongest kinetic effects in γe are observed at low-intermediate collisionalities, and tend to increase (keeping upstream collisionality fixed) at increasing upstream densities and temperatures. On the other hand, the heat flux suppression is found to increase monotonically as upstream collisionality decreases. The conditions simulated encompass collisionalities relevant to current and future tokamaks.
Description
Submitted for publication in Nuclear Fusion
Date issued
2023-04
URI
https://hdl.handle.net/1721.1/158586
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Nuclear Fusion
Publisher
IOP
Other identifiers
23ja123

Collections
  • Journal Article Series (JA)
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.