Show simple item record

dc.contributor.authorDi Siena, A.en_US
dc.contributor.authorRodriguez Fernandez, Pabloen_US
dc.contributor.authorHoward, Nathan T.en_US
dc.contributor.authorBañón Navarro, A.en_US
dc.contributor.authorBilato, R.en_US
dc.contributor.authorGörler, T.en_US
dc.contributor.authorPoli, E.en_US
dc.contributor.authorMerlo, G.en_US
dc.contributor.authorWright, John C.en_US
dc.contributor.authorGreenwald, M.en_US
dc.contributor.authorJenko, F.en_US
dc.date.accessioned2025-03-21T20:13:53Z
dc.date.available2025-03-21T20:13:53Z
dc.date.issued2023-01
dc.identifier23ja046
dc.identifier.urihttps://hdl.handle.net/1721.1/158599
dc.descriptionSubmitted for publication in Nuclear Fusion
dc.description.abstractThe recent progress in high-temperature superconductor technologies has led to the design and construction of SPARC, a compact tokamak device expected to reach plasma breakeven with up to 25MW of external ion cyclotron resonant heating (ICRH) power. This manuscript presents local (flux-tube) and radially global gyrokinetic GENE (Jenko et al 2000 Phys. Plasmas 7 1904) simulations for a reduced-field and current H-mode SPARC scenario showing that supra-thermal particles - generated via ICRH - strongly suppress ion-scale turbulent transport by triggering a fast ion-induced anomalous transport barrier (F-ATB). The trigger mechanism is identified as a wave- particle resonant interaction between the fast particle population and plasma micro-instabilities (Di Siena et al 2021 Phys. Rev. Lett. 125 025002). By performing a series of global simulations employing different profiles for the thermal ions, we show that the fusion gain of this SPARC scenario could be substantially enhanced by up to ∼ 80% by exploiting this fast ion stabilizing mechanism. A study is also presented to further optimize the energetic particle profiles, thus possibly leading experimentally to an even more significant fusion gain.
dc.publisherIOPen_US
dc.relation.isversionofdoi.org/10.1088/1741-4326/acb1c7
dc.sourcePlasma Science and Fusion Centeren_US
dc.titlePredictions of improved confinement in SPARC via energetic particle turbulence stabilizationen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalNuclear Fusion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record