MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acoustic MEMS Sensor Array for Quench Detection of CICC Superconducting Cables

Author(s)
Takayasu, Makoto
Thumbnail
Download20ja042_full.pdf (8.620Mb)
Metadata
Show full item record
Abstract
A novel quench detection method using microelectro- mechanical system (MEMS) sensor technology has been investigated in use for high temperature superconducting (HTS) conductors such REBCO tape cables. The sensor array along a superconducting cable, such as a cable-in-conduit-conductor (CICC), is installed in a cooling channel. It will allow sensitive and quick detection for a local quench of a superconducting cable. This work has confirmed that a quench of a single REBCO tape can be detected in liquid nitrogen by a MEMS piezoelectric microphone sensor. The quench detection design utilizing a MEMS sensor array method is discussed for the case of a toroidal field (TF) magnets of a fusion Tokamak device.
Description
Submitted for publication in IEEE Transactions on Applied Superconductivity
Date issued
2019-09
URI
https://hdl.handle.net/1721.1/158611
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
IEEE Transactions on Applied Superconductivity
Publisher
IEEE
Other identifiers
20ja042

Collections
  • Journal Article Series (JA)
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.