Show simple item record

dc.contributor.authorHartouni, E.P.en_US
dc.contributor.authorMoore, A.S.en_US
dc.contributor.authorCrilly, A.J.en_US
dc.contributor.authorAppelbe, B.D.en_US
dc.contributor.authorAmendt, P.A.en_US
dc.contributor.authorBaker, K.L.en_US
dc.contributor.authorCasey, D.T.en_US
dc.contributor.authorClark, D.S.en_US
dc.contributor.authorDöppner, T.en_US
dc.contributor.authorEckart, M.J.en_US
dc.contributor.authorField, J.E.en_US
dc.contributor.authorGatu Johnson, Mariaen_US
dc.contributor.authorGrim, G.P.en_US
dc.contributor.authorHatarik, R.en_US
dc.contributor.authorJeet, J.en_US
dc.contributor.authorKerr, S.M.en_US
dc.contributor.authorKilkenny, J.en_US
dc.contributor.authorKritcher, A.L.en_US
dc.contributor.authorMeaney, K.D.en_US
dc.contributor.authorMilovich, J.L.en_US
dc.contributor.authorMunro, D.H.en_US
dc.contributor.authorNora, R.C.en_US
dc.contributor.authorPak, A.E.en_US
dc.contributor.authorRalph, J.E.en_US
dc.contributor.authorRobey, H.F.en_US
dc.contributor.authorRoss, J.S.en_US
dc.contributor.authorSchlossberg, D.J.en_US
dc.contributor.authorSepke, S.M.en_US
dc.contributor.authorSpears, B.K.en_US
dc.contributor.authorYoung, C.V.en_US
dc.contributor.authorZylstra, A.B.en_US
dc.date.accessioned2025-03-21T20:16:00Z
dc.date.available2025-03-21T20:16:00Z
dc.date.issued2021-06
dc.identifier21ja116
dc.identifier.urihttps://hdl.handle.net/1721.1/158631
dc.descriptionSubmitted for publication in Nature Physics
dc.description.abstractAt the National Ignition Facility, inertial confinement fusion experiments aim to burn and ignite a hydrogen plasma to generate a net source of energy through the fusion of deuterium and tritium ions. The energy deposited by α-particles released from the deuterium–tritium fusion reaction plays the central role in heating the fuel to achieve a sustained thermonuclear burn. In the hydrodynamic picture, α-heating increases the temperature of the plasma, leading to increased reactivity because the mean ion kinetic energy increases. Therefore, the ion temperature is related to the mean ion kinetic energy. Here we use the moments of the neutron spectrum to study the relationship between the ion temperature (measured by the variance in the neutron kinetic energy spectrum) and the ion mean kinetic energy (measured by the shift in the mean neutron energy). We observe a departure from the relationship expected for plasmas where the ion relative kinetic energy distribution is Maxwell–Boltzmann, when the plasma begins to burn. Understanding the cause of this departure from hydrodynamic behaviour could be important for achieving robust and reproducible ignition.
dc.publisherNatureen_US
dc.relation.isversionofdoi.org/10.1038/s41567-022-01809-3
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleEvidence for suprathermal ion distribution in burning plasmasen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalNature Physics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record