Show simple item record

dc.contributor.authorBaker, K.L.en_US
dc.contributor.authorJones, O.en_US
dc.contributor.authorWeber, C.en_US
dc.contributor.authorClark, D.en_US
dc.contributor.authorPatel, P.K.en_US
dc.contributor.authorThomas, C.A.en_US
dc.contributor.authorLanden, O.L.en_US
dc.contributor.authorNora, R.en_US
dc.contributor.authorAnderson, G.J.en_US
dc.contributor.authorGaffney, J.en_US
dc.contributor.authorMacLaren, S.en_US
dc.contributor.authorCasey, D.T.en_US
dc.contributor.authorDöppner, T.en_US
dc.contributor.authorDewald, E.en_US
dc.contributor.authorTommasini, R.en_US
dc.contributor.authorSpears, B.K.en_US
dc.contributor.authorSalmonson, J.en_US
dc.contributor.authorHohenberger, M.en_US
dc.contributor.authorKhan, S.en_US
dc.contributor.authorZylstra, A.en_US
dc.contributor.authorKritcher, A.en_US
dc.contributor.authorAmendt, P.en_US
dc.contributor.authorSmalyuk, V.en_US
dc.contributor.authorLindl, J.en_US
dc.contributor.authorYoung, C.en_US
dc.contributor.authorRoss, S.en_US
dc.contributor.authorHo, D.en_US
dc.contributor.authorHurricane, O.A.en_US
dc.contributor.authorCallahan, D.A.en_US
dc.contributor.authorWoods, T.en_US
dc.contributor.authorMilovich, J.L.en_US
dc.contributor.authorBerger, R.L.en_US
dc.contributor.authorStrozzi, D.en_US
dc.contributor.authorBachmann, B.en_US
dc.contributor.authorBionta, R.en_US
dc.contributor.authorCelliers, P.M.en_US
dc.contributor.authorFittinghoff, D.en_US
dc.contributor.authorHatarik, R.en_US
dc.contributor.authorGatu Johnson, Mariaen_US
dc.contributor.authorMeaney, K.en_US
dc.contributor.authorMillot, M.en_US
dc.contributor.authorVolegov, P.L.en_US
dc.contributor.authorWilde, C.en_US
dc.date.accessioned2025-03-21T20:17:29Z
dc.date.available2025-03-21T20:17:29Z
dc.date.issued2021-10
dc.identifier21ja114
dc.identifier.urihttps://hdl.handle.net/1721.1/158650
dc.descriptionSubmitted for publication in Physics of Plasmas
dc.description.abstractA goal of the laser-based National Ignition Facility (NIF) is to increase the liberated fusion energy “yield” in inertial confinement fusion experiments well past the ignition threshold and the input laser energy. One method of increasing the yield, hydrodynamic scaling of current experiments, does not rely on improving compression or implosion velocity, but rather increases the scale of the implosion to increase hotspot areal density and confinement time. Indirect-drive (Hohlraum driven) implosions carried out at two target sizes, 12.5% apart, have validated hydroscaling expectations. Moreover, extending comparisons to the best-performing implosions at five different capsule sizes shows that their performance also agrees well with hydroscaling expectations even though not direct hydroscales of one another. In the future, by switching to a reduced loss Hohlraum geometry, simulations indicate that we can drive 20% larger-scale implosions within the current power and energy limitations on the NIF. At the demonstrated compression and velocity of these smaller-scale implosions, these 1.2 hydroscaled implosions should put us well past the ignition threshold.
dc.publisherAIPen_US
dc.relation.isversionofdoi.org/10.1063/5.0080732
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleHydroscaling indirect-drive implosions on the National Ignition Facilityen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalPhysics of Plasmas


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record