Show simple item record

dc.contributor.authorVahala, Georgeen_US
dc.contributor.authorValhala, Lindaen_US
dc.contributor.authorSoe, Minen_US
dc.contributor.authorRam, Abhay K.en_US
dc.date.accessioned2025-03-21T20:20:00Z
dc.date.available2025-03-21T20:20:00Z
dc.date.issued2020-12
dc.identifier20ja104
dc.identifier.urihttps://hdl.handle.net/1721.1/158685
dc.descriptionSubmitted for publication in Radiation Effects and Defects in Solids
dc.description.abstractA quantum lattice algorithm (QLA) is developed for Maxwell equations in scalar dielectric media using the Riemann-Silberstein representation on a Cartesian grid. For x-dependent and y-dependent dielectric inhomogeneities, the corresponding QLA requires a minimum of 8 qubits/spatial lattice site. This is because the corresponding Pauli spin matrices have off-diagonal components which permit the local collisional entanglement of these qubits. However, z-dependent inhomogeneities require a QLA with a minimum of 16 qubits/lattice site since the Pauli spin matrix σz is diagonal. For 2 dimensional inhomogeneities, one can readily couple the 8-8 qubit schemes for x-y variations. z-x and y-z variations can be treated by either a 16-8 qubit scheme or a 16-16 qubit representation.
dc.publisherTaylor & Francisen_US
dc.relation.isversionofdoi.org/10.1080/10420150.2021.1891058
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleOne and Two Dimensional Quantum Lattice Algorithms for Maxwell Equations in Inhomogeneous Scalar Dielectric Media I: Theoryen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalRadiation Effects and Defects in Solids


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record