Show simple item record

dc.contributor.authorWhitley, Heather D.en_US
dc.contributor.authorKemp, G. Elijahen_US
dc.contributor.authorYeamans, Charles B.en_US
dc.contributor.authorWalters, Zachary B.en_US
dc.contributor.authorBlue, Brent E.en_US
dc.contributor.authorGarbett, Warren J.en_US
dc.contributor.authorSchneider, Marilyn B.en_US
dc.contributor.authorCraxton, R. Stephenen_US
dc.contributor.authorGarcia, Emma M.en_US
dc.contributor.authorMcKenty, Patrick W.en_US
dc.contributor.authorGatu Johnson, Mariaen_US
dc.contributor.authorCaspersen, Kyleen_US
dc.contributor.authorCastor, John I.en_US
dc.contributor.authorDäne, Markusen_US
dc.contributor.authorEllison, C. Lelanden_US
dc.contributor.authorGaffney, Jim A.en_US
dc.contributor.authorGraziani, Frank R.en_US
dc.contributor.authorKlepeis, John E.en_US
dc.contributor.authorKostinski, Natalie B.en_US
dc.contributor.authorKritcher, Andrea L.en_US
dc.contributor.authorLahmann, Brandonen_US
dc.contributor.authorLazicki, Amy E.en_US
dc.contributor.authorLe, Hai P.en_US
dc.contributor.authorLondon, Richard A.en_US
dc.contributor.authorMaddox, Brianen_US
dc.contributor.authorMarshall, Michelle C.en_US
dc.contributor.authorMartin, Madison E.en_US
dc.contributor.authorMilitzer, Burkharden_US
dc.contributor.authorNikroo, Abbasen_US
dc.contributor.authorNilsen, Josephen_US
dc.contributor.authorOgitsu, Tadashien_US
dc.contributor.authorPask, John E.en_US
dc.contributor.authorPino, Jesse E.en_US
dc.contributor.authorRubery, Michael S.en_US
dc.contributor.authorShepherd, Ronnieen_US
dc.contributor.authorSterne, Philip A.en_US
dc.contributor.authorSwift, Damian C.en_US
dc.contributor.authorYang, Linen_US
dc.contributor.authorZhang, Shuaien_US
dc.date.accessioned2025-03-21T20:20:34Z
dc.date.available2025-03-21T20:20:34Z
dc.date.issued2019-12
dc.identifier19ja114
dc.identifier.urihttps://hdl.handle.net/1721.1/158695
dc.descriptionSubmitted for publication in High Energy Density Physics
dc.description.abstractWe examine the performance of pure boron, boron carbide, high density carbon, and boron nitride ablators in the polar direct drive exploding pusher (PDXP) platform. The platform uses the polar direct drive con guration at the National Ignition Facility to drive high ion temperatures in a room temperature capsule and has potential applications for plasma physics studies and as a neutron source. The higher tensile strength of these materials compared to plastic enables a thinner ablator to support higher gas pressures, which could help optimize its performance for plasma physics experiments, while ablators containing boron enable the possiblity of collecting addtional data to constrain models of the platform. Applying recently developed and experimentally validated equation of state models for the boron materials, we examine the performance of these materials as ablators in 2D simulations, with particular focus on changes to the ablator and gas areal density, as well as the predicted symmetry of the inherently 2D implosion.
dc.publisherElsevieren_US
dc.relation.isversionofdoi.org/10.1016/j.hedp.2021.100928
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleComparison of ablators for the polar direct drive exploding pusher platformen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalHigh Energy Density Physics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record