dc.contributor.author | Schlossberg, D.J. | en_US |
dc.contributor.author | Grim, G.P. | en_US |
dc.contributor.author | Casey, D.T. | en_US |
dc.contributor.author | Moore, A.S. | en_US |
dc.contributor.author | Nora, R. | en_US |
dc.contributor.author | Bachmann, B. | en_US |
dc.contributor.author | Benedetti, L.R. | en_US |
dc.contributor.author | Bionta, R.M. | en_US |
dc.contributor.author | Eckart, M.J. | en_US |
dc.contributor.author | Field, J.E. | en_US |
dc.contributor.author | Fittinghoff, D.N. | en_US |
dc.contributor.author | Gatu Johnson, Maria | en_US |
dc.contributor.author | Geppert-Kleinrath, V. | en_US |
dc.contributor.author | Hartouni, E.P. | en_US |
dc.contributor.author | Hatarik, R. | en_US |
dc.contributor.author | Hsing, W.W. | en_US |
dc.contributor.author | Jarrott, L.C. | en_US |
dc.contributor.author | Khan, S.F. | en_US |
dc.contributor.author | Kilkenny, J.D. | en_US |
dc.contributor.author | Landen, O.L. | en_US |
dc.contributor.author | MacGowan, B.J. | en_US |
dc.contributor.author | Mackinnon, A.J. | en_US |
dc.contributor.author | Meaney, K.D. | en_US |
dc.contributor.author | Munro, D.H. | en_US |
dc.contributor.author | Nagel, S.R. | en_US |
dc.contributor.author | Pak, A. | en_US |
dc.contributor.author | Patel, P.K. | en_US |
dc.contributor.author | Spears, B.K. | en_US |
dc.contributor.author | Volegov, P.L. | en_US |
dc.contributor.author | Young, C.V. | en_US |
dc.date.accessioned | 2025-03-21T20:20:46Z | |
dc.date.available | 2025-03-21T20:20:46Z | |
dc.date.issued | 2020-03 | |
dc.identifier | 20ja106 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/158698 | |
dc.description | Submitted for publication in Physical Review Letters | |
dc.description.abstract | Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the Mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50% and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill tube perturbation that is entrained by the hot spot flow confirms the average flow speeds deduced from neutron spectroscopy. | |
dc.publisher | APS | en_US |
dc.relation.isversionof | doi.org/10.1103/physrevlett.127.125001 | |
dc.source | Plasma Science and Fusion Center | en_US |
dc.title | Observation of Hydrodynamic Flows in Imploding Fusion Plasmas on the National Ignition Facility | en_US |
dc.type | Article | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Plasma Science and Fusion Center | |
dc.relation.journal | Physical Review Letters | |