Effect of Strongly Magnetized Electrons and Ions on Heat Flow and Symmetry of Inertial Fusion Implosions
Author(s)
Bose, A.; Peebles, J.; Walsh, C.A.; Frenje, Johan A.; Kabadi, Neel V.; Adrian, Patrick J.; Sutcliffe, G.D.; Gatu Johnson, Maria; Frank, C.A.; Davies, J.R.; Betti, R.; Glebov, V.Yu.; Marshall, F.J.; Regan, S.P.; Stoeckl, C.; Campbell, E.M.; Sio, H.; Moody, J.; Crilly, A.; Appelbe, B.D.; Chittenden, J.P.; Atzeni, S.; Barbato, F.; Forte, A.; Li, Chi-Kang; Séguin, Frederick H.; Petrasso, Richard D.; ... Show more Show less
Download22ja012_full.pdf (3.428Mb)
Metadata
Show full item recordAbstract
This Letter presents the first observation on how a strong, 500 kG, externally applied B field increases the mode-two asymmetry in shock-heated inertial fusion implosions. Using a direct-drive implosion with polar illumination and imposed field, we observed that magnetization produces a significant increase in the implosion oblateness (a 2.5× larger P2 amplitude in x-ray self-emission images) compared with reference experiments with identical drive but with no field applied. The implosions produce strongly magnetized electrons (ωeτe ≫ 1) and ions (ωiτi > 1) that, as shown using simulations, restrict the cross field heat flow necessary for lateral distribution of the laser and shock heating from the implosion pole to the waist, causing the enhanced mode-two shape.
Description
Submitted for publication in Physical Review Letters
Date issued
2022-05Department
Massachusetts Institute of Technology. Plasma Science and Fusion CenterJournal
Physical Review Letters
Publisher
APS
Other identifiers
22ja012