MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empirical probability and machine learning analysis of m, n = 2, 1 tearing mode onset parameter dependence in DIII-D H-mode scenarios

Author(s)
Bardóczi, L.; Richner, N.J.; Zhu, Jinxiang; Rea, Cristina; Logan, N.C.
Thumbnail
Download23ja017_full.pdf (2.563Mb)
Metadata
Show full item record
Abstract
m, n = 2, 1 tearing mode onset empirical probability and machine learning analyses of a multiscenario DIII-D database of over 14 000 H- mode discharges show that the normalized plasma beta, the rotation profile, and the magnetic equilibrium shape have the strongest impact on the 2,1 tearing mode stability, in qualitative agreement with neoclassical tearing modes (m and n are the poloidal and toroidal mode numbers, respectively). In addition, 2,1 tearing modes are most likely to destabilize when n > 1 tearing modes are already present in the core plasma. The covariance matrix of tearing sensitive plasma parameters takes a nearly block-diagonal form, with the blocks incorporating thermodynamic, current and safety factor profile, separatrix shape, and plasma flow parameters, respectively. This suggests a number of paths to improved stability at fixed pressure and edge safety factor primarily by preserving a minimum of 1 kHz differential rotation, increasing the minimum safety factor above unity, using upper single null magnetic configuration, and reducing the core impurity radiation. In addition, lower triangularity, lower elongation, and lower pedestal pressure may also help to improve stability. The electron and ion temperature, collisionality, resistivity, internal inductance, and the parallel current gradient appear to only weakly correlate with the 2,1 tearing mode onsets in this database.
Description
Submitted for publication in Physics of Plasmas
Date issued
2023-08
URI
https://hdl.handle.net/1721.1/158765
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Physics of Plasmas
Publisher
AIP
Other identifiers
23ja017

Collections
  • Journal Article Series (JA)
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.