MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

GIM: Guidance as Initialization Method

Author(s)
Duitama Cortes, Juan Sebastian
Thumbnail
DownloadThesis PDF (7.965Mb)
Advisor
Katz, Boris
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This work makes two contributions: the evaluation of early stop guidance for deep Fully Connected Networks (FCNs) and the introduction of guidance as an initialization method (GIM). Network initialization has been a meaningful and challenging topic in the field of machine learning (ML) for a long time. Many initialization methods exist, ranging from data-independent to data-dependent approaches. Initializations allow for a better understanding of model behavior and improvements in model performance. The novel guidance tool enabled us to propose GIM, a new technique that initializes a model by leveraging representational similarity with respect to models of different architectures. A model with an architecture that performs poorly in a specific task can be initialized with guidance from a model with an architecture that performs well in the respective task. We focus on the case of FCNs in the task of image classification and provide experimental results to validate our approach.
Date issued
2025-02
URI
https://hdl.handle.net/1721.1/159090
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.