Show simple item record

dc.contributor.advisorKatz, Boris
dc.contributor.authorDuitama Cortes, Juan Sebastian
dc.date.accessioned2025-04-14T14:04:58Z
dc.date.available2025-04-14T14:04:58Z
dc.date.issued2025-02
dc.date.submitted2025-04-03T14:06:13.351Z
dc.identifier.urihttps://hdl.handle.net/1721.1/159090
dc.description.abstractThis work makes two contributions: the evaluation of early stop guidance for deep Fully Connected Networks (FCNs) and the introduction of guidance as an initialization method (GIM). Network initialization has been a meaningful and challenging topic in the field of machine learning (ML) for a long time. Many initialization methods exist, ranging from data-independent to data-dependent approaches. Initializations allow for a better understanding of model behavior and improvements in model performance. The novel guidance tool enabled us to propose GIM, a new technique that initializes a model by leveraging representational similarity with respect to models of different architectures. A model with an architecture that performs poorly in a specific task can be initialized with guidance from a model with an architecture that performs well in the respective task. We focus on the case of FCNs in the task of image classification and provide experimental results to validate our approach.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleGIM: Guidance as Initialization Method
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record