Show simple item record

dc.contributor.advisorJeffrey H. Lang.en_US
dc.contributor.authorMur Miranda, José Oscar, 1972-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-05-17T14:39:31Z
dc.date.available2005-05-17T14:39:31Z
dc.date.copyright2004en_US
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/16609
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.en_US
dc.descriptionIncludes bibliographical references (p. 193-197).en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.description.abstractUltra-Low-Power electronics can perform useful functions with power levels as low as 170 nW. This makes them amenable to powering from ambient sources such as vibration. In this case, they can become autonomous. Motivated by this application, this thesis provides the necessary tools to analyze, design and fabricate MEMS devices capable of electrostatic vibration-to-electric energy conversion at the microwatt level. The fundamental means of en- ergy conversion is a variable capacitor that is excited through a generating energy conversion cycle with every vibration cycle of the converter. This thesis presents a road map on how to design MEMS electrostatic vibration-to- electric energy converters. A proposed converter is designed to illustrate the design process, and is based on vibration levels typical of rotating machinery, which are around 2% of the acceleration of gravity from 1-5 kHz. The converter consists of a square centimeter with a 195 mg proof mass which travels ±200 pm. This mass and travel can couple to a sinusoidal acceleration source of 0.02g at 2.5 kHz, typical of rotating machinery, so as to capture 24 nJ per cycle. This moving proof mass is designed to provide a variable capacitor ranging from 1 pF to 80 pF. Adding a capacitor of 88 pF in parallel with this device will result in a capacitance change from 168 pF to 89 pF that is required to extract 24 nJ using a charge-constrained cycle.en_US
dc.description.abstract(cont.) This device can be attached to power electronics that implement a charge-constrained cycle and deliver 0.5 nJ back to the reservoir for a total power output of 1.3 [mu]/W at 2.5 kHz. The efficiency of the electrical conversion is 2%. Including packaging, the power per volume would be 0.87 [mu]W/cm3 and the power per mass would be 1.3 [mu]W/g. System improvements are also identified such as those that address the principal sources of loss. For example, decreasing the output capacitance of the MOSFET switches from 10 pF to 1 pF, while keeping the energy conversion cycle the same, results in an energy output of 13 nJ out of 24 nJ, for an efficiency of 54% and a power output of 33 [mu]W. This argues strongly for the use of integrated circuits in which the output capacitance of the MOSFET switches can be reduced for this application.en_US
dc.description.statementofresponsibilityJosé Oscar Mur Miranda.en_US
dc.format.extent197 p.en_US
dc.format.extent4672340 bytes
dc.format.extent2956536 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleElectrostatic vibration-to-electric energy conversionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc55666947en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record