MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radio frequency rectifiers for DC-DC power conversion

Author(s)
Wahby, Riad Samir, 1981-
Thumbnail
DownloadFull printable version (573.5Kb)
Alternative title
Radio frequency rectifiers for direct current-direct current power conversion
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
David J. Perreault.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A significant factor driving the development of power conversion technology is the need to increase performance while reducing size and improving efficiency. In addition, there is a desire to increase the level of integration of DC-DC converters in order to take advantage of the cost and other benefits of batch fabrication techniques. While advances in the power density and integration of DC-DC converters have been realized through development of better active device technologies, much room for improvement remains in the size and fabrication of passive components. To achieve these improvements, a substantial increase in operating frequency is needed, since intermediate energy storage requirements are inversely proportional to frequency. Unfortunately, traditional power conversion techniques are ill-suited to handle this dramatic escalation of switching frequency. New architectures have been proposed which promise to deliver radical performance improvements while potentially reaching microwave frequencies. These new architectures promise to enable substantial miniaturization of DC-DC converters and to permit much a higher degree of integration. The principal effort of this thesis is the development of design and characterization methods for rectifier topologies amenable to use in the new architectures. A computational design approach allowing fast and accurate circuit analysis and synthesis is developed and applied, along with traditional analysis, to two demonstrative rectifier topologies. In addition, the application of coupled magnetic structures for parasitic mitigation is considered. Experimental implementations are investigated to verify analytic and computational results.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
 
Includes bibliographical references (p. 75-78).
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/16690
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.