MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trajectory optimization using mixed-integer linear programming

Author(s)
Richards, Arthur George, 1977-
Thumbnail
DownloadFull printable version (1.353Mb)
Alternative title
Trajectory optimization using MILP
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Jonathan P. How.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents methods for finding optimal trajectories for vehicles subjected to avoidance and assignment requirements. The former include avoidance of collisions with obstacles or other vehicles and avoidance of thruster plumes from spacecraft. Assignment refers to the inclusion of decisions about terminal constraints in the optimization, such as assignment of waypoints to UAVs and the assignment of spacecraft to positions in a formation. These requirements lead to non-convex constraints and difficult optimizations. However, they can be formulated as mixed-integer linear programs (MILP) that can be solved for global optimality using powerful, commercial software. This thesis provides several extensions to previous work using MILP. The constraints for avoidance are extended to prevent plume impingement, which occurs when one spacecraft fire thrusters towards another. Methods are presented for efficient simplifications to complex problems, allowing solutions to be obtained in practical computation times. An approximation is developed to enable the inclusion of aircraft dynamics in a linear optimization, and also to include a general form of waypoint assignment suitable for UAV problems. Finally, these optimizations are used in model predictive control, running in real-time to incorporate feedback and compensate for uncertainty. Two major application areas are considered: spacecraft and aircraft. Spacecraft problems involve minimum fuel optimizations, and include ISS rendezvous and satellite cluster configuration. Aircraft problems are solved for minimum flight-time, or in the case of UAV problems with assignment, waypoint values and vehicle capabilities are included. Aircraft applications include air traffic management and coordination of autonomous UAVs. The results in this thesis provide a direct route to globally-optimal solutions of these non-convex trajectory optimizations.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.
 
Includes bibliographical references (p. 121-129).
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/16873
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.