Show simple item record

dc.contributor.advisorJonathan P. How.en_US
dc.contributor.authorRichards, Arthur George, 1977-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2005-05-19T15:06:46Z
dc.date.available2005-05-19T15:06:46Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/16873
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.en_US
dc.descriptionIncludes bibliographical references (p. 121-129).en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.description.abstractThis thesis presents methods for finding optimal trajectories for vehicles subjected to avoidance and assignment requirements. The former include avoidance of collisions with obstacles or other vehicles and avoidance of thruster plumes from spacecraft. Assignment refers to the inclusion of decisions about terminal constraints in the optimization, such as assignment of waypoints to UAVs and the assignment of spacecraft to positions in a formation. These requirements lead to non-convex constraints and difficult optimizations. However, they can be formulated as mixed-integer linear programs (MILP) that can be solved for global optimality using powerful, commercial software. This thesis provides several extensions to previous work using MILP. The constraints for avoidance are extended to prevent plume impingement, which occurs when one spacecraft fire thrusters towards another. Methods are presented for efficient simplifications to complex problems, allowing solutions to be obtained in practical computation times. An approximation is developed to enable the inclusion of aircraft dynamics in a linear optimization, and also to include a general form of waypoint assignment suitable for UAV problems. Finally, these optimizations are used in model predictive control, running in real-time to incorporate feedback and compensate for uncertainty. Two major application areas are considered: spacecraft and aircraft. Spacecraft problems involve minimum fuel optimizations, and include ISS rendezvous and satellite cluster configuration. Aircraft problems are solved for minimum flight-time, or in the case of UAV problems with assignment, waypoint values and vehicle capabilities are included. Aircraft applications include air traffic management and coordination of autonomous UAVs. The results in this thesis provide a direct route to globally-optimal solutions of these non-convex trajectory optimizations.en_US
dc.description.statementofresponsibilityby Arthur George Richards.en_US
dc.format.extent129 p.en_US
dc.format.extent1419891 bytes
dc.format.extent1419588 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleTrajectory optimization using mixed-integer linear programmingen_US
dc.title.alternativeTrajectory optimization using MILPen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc51686447en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record