MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Laboratory for Energy and the Environment (LFEE)
  • 1. Reports
  • View Item
  • DSpace@MIT Home
  • Laboratory for Energy and the Environment (LFEE)
  • 1. Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Use of source apportionment model for designing acid deposition mitigating strategies in Massachusetts

Author(s)
Fay, James A.; Golomb, D.; Zemba, Stephen G.
Thumbnail
DownloadMIT-EL-87-005-19763366.pdf (644.4Kb)
Metadata
Show full item record
Abstract
The Commonwealth of Massachusetts promulgated an Act limiting S2 emissions from large sources that burn fuel at a rate greater than or equal to 100 million Btu (MBtu) of fuel input per hour. The Act requires that by 1995 the average emission rate at such facilities be less than or equal to 1.2 lb SO2 per MBtu fuel input. Because of their size, almost all power plants in Massachusetts could be subject to emission reductions. Since the average 1980-1982 annual emission rate of Massachusetts power plants was 1.84 lb S02/MBtu ("base case"), the Act requires the annual average emission rate of power plants to diminish by 35%. We use a source apportionment model to estimate the wet sulfate deposition to typical sensitive Massachusetts receptors from Massachusetts power plants, separately for the summer (April-September) and winter (October-March) half-years. We find that the summer wet deposition is about twice the winter deposition, although summer and winter SO2 emissions are approximately equal. Therefore, to reduce sulfate deposition, t is more effective to reduce emissions in the summer months rather than in winter. Using the seasonal source apportionment model we find that an annual wet deposition reduction equal to that resulting from the Act could be accomplished if only summer emission rates were reduced to 0.86 lb SO /MBtu, with winter emission rates remaining at 1.84 lb S02/MBtu. The resulging annual average emission rate is 1.35 lb SO /MBtu, 27% less than the base value. As 1980-1982 average annual emissions rom power plants amounted to 270,000 tons of SO annually, a summer emission control program would save about 21,000 tons of S emission reduction without sacrificing wet deposition protection. Te summer emission reduction could be acomplished by substituting lower sulfur content fuels, including natural gas, for higher sulfur content fuels.
Date issued
1987
URI
http://hdl.handle.net/1721.1/18197
Publisher
MIT Energy Lab
Other identifiers
19763366
Series/Report no.
MIT-EL87-005

Collections
  • 1. Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.