MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-layer protocol interactions in heterogeneous data networks

Author(s)
Liu, Chunmei, 1970-
Thumbnail
DownloadFull printable version (10.09Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Eytan H. Modiano.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
(cont.) TCP timeout backoff and MAC layer retransmissions, are studied in detail. The results show that the system performance is a balance of idle slots and collisions at the MAC layer, and a tradeoff between packet loss probability and round trip time at the transport layer. Finally, we consider the optimal scheduling problem with window service constraints. Optimal policies that minimize the average response time of jobs are derived and the results show that both the job lengths and the window sizes are essential to the optimal policy.
 
Modern data networks are heterogeneous in that they often employ a variety of link technologies, such as wireline, optical, satellite and wireless links. As a result, Internet protocols, such as Transmission Control Protocol (TCP), that were designed for wireline networks, perform poorly when used over heterogeneous networks. This is particularly the case for satellite and wireless networks which are often characterized by high bandwidth-delay product and high link loss probability. This thesis examines the performance of TCP in the context of heterogeneous networks, particularly focusing on interactions between protocols across different layers of the protocol stack. First, we provide an analytical framework to study the interaction between TCP and link layer retransmission protocols (ARQ). The system is modelled as a Markov chain with reward functions, and detailed queueing models are developed for the link layer ARQ. The analysis shows that in most cases implementing ARQ can achieve significant improvement in system throughput. Moreover, by proper choice of protocols parameters, such as the packet size and the number of transmission attempts per packet, significant performance improvement can be obtained. We then investigate the interaction between TCP at the transport layer and ALOHA at the MAC layer. Two equations are derived to express the system performance in terms of various system and protocol parameters, which show that the maximum possible system throughput is 1/e. A sufficient and necessary condition to achieve this throughput is also presented, and the optimal MAC layer transmission probability at which the system achieves its highest throughput is given. Furthermore, the impact of other system and protocol parameters, such as
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.
 
Includes bibliographical references (p. 143-148).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/28918
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.