Show simple item record

dc.contributor.advisorEytan H. Modiano.en_US
dc.contributor.authorLiu, Chunmei, 1970-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2005-09-27T19:03:36Z
dc.date.available2005-09-27T19:03:36Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/28918
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 143-148).en_US
dc.description.abstract(cont.) TCP timeout backoff and MAC layer retransmissions, are studied in detail. The results show that the system performance is a balance of idle slots and collisions at the MAC layer, and a tradeoff between packet loss probability and round trip time at the transport layer. Finally, we consider the optimal scheduling problem with window service constraints. Optimal policies that minimize the average response time of jobs are derived and the results show that both the job lengths and the window sizes are essential to the optimal policy.en_US
dc.description.abstractModern data networks are heterogeneous in that they often employ a variety of link technologies, such as wireline, optical, satellite and wireless links. As a result, Internet protocols, such as Transmission Control Protocol (TCP), that were designed for wireline networks, perform poorly when used over heterogeneous networks. This is particularly the case for satellite and wireless networks which are often characterized by high bandwidth-delay product and high link loss probability. This thesis examines the performance of TCP in the context of heterogeneous networks, particularly focusing on interactions between protocols across different layers of the protocol stack. First, we provide an analytical framework to study the interaction between TCP and link layer retransmission protocols (ARQ). The system is modelled as a Markov chain with reward functions, and detailed queueing models are developed for the link layer ARQ. The analysis shows that in most cases implementing ARQ can achieve significant improvement in system throughput. Moreover, by proper choice of protocols parameters, such as the packet size and the number of transmission attempts per packet, significant performance improvement can be obtained. We then investigate the interaction between TCP at the transport layer and ALOHA at the MAC layer. Two equations are derived to express the system performance in terms of various system and protocol parameters, which show that the maximum possible system throughput is 1/e. A sufficient and necessary condition to achieve this throughput is also presented, and the optimal MAC layer transmission probability at which the system achieves its highest throughput is given. Furthermore, the impact of other system and protocol parameters, such asen_US
dc.description.statementofresponsibilityby Chunmei Liu.en_US
dc.format.extent148 p.en_US
dc.format.extent7671080 bytes
dc.format.extent7690848 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleCross-layer protocol interactions in heterogeneous data networksen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc60495594en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record