MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wrinkling and sagging of viscous sheets

Author(s)
Teichman, Jeremy Alan, 1975-
Thumbnail
DownloadFull printable version (7.177Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
L. Mahadevan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis explores the wrinkling and sagging behavior of thin viscous Newtonian sheets and filaments motivated by analogous scenarios in elasticity. These problems involve dynamic free boundaries and geometric nonlinearities but use simple physics. The first problem examined concerns an annular viscous sheet subjected to torsional shearing which consequently develops spiral wrinkles. Examination of the behavior of this system leads to a scaling of the Stokes equations for zero Reynolds number flow resulting in a reduced order mathematical model for the evolution of the sheet that includes the effects of gravity and surface tension. Linear stability analysis yields the most unstable modes for wrinkling of the sheet and their associated growth rates at onset which agree with experimental observations. In the limit of a narrow annular gap, the problem reduces to that of a sheared rectilinear sheet. Interestingly, this Couette problem shows instabilities even in the zero Reynolds number limit. The second problem examined concerns the sagging of a horizontal viscida (fluid filament) under the influence of gravity. Resistance of the viscida to bending controls the initial phase of deformation, while resistance to stretching begins to play a principal role in later stages. At very late times the process resembles droplet break-off from two thin filaments.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2002.
 
Vita.
 
Includes bibliographical references (p. 131-133).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/29257
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.