MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanometer-precision electron-beam lithography with applications in integrated optics

Author(s)
Hastings, Jeffrey Todd, 1975-
Thumbnail
DownloadFull printable version (16.93Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Henry I. Smith.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Scanning electron-beam lithography (SEBL) provides sub-10-nm resolution and arbitrary-pattern generation; however, SEBL's pattern-placement accuracy remains inadequate for future integrated-circuits and integrated-optical devices. Environmental disturbances, system imperfections, charging, and a variety of other factors contribute to pattern-placement inaccuracy. To overcome these limitations, spatial-phase locked electron-beam lithography (SPLEBL) monitors the beam location with respect to a reference grid on the substrate. Phase detection of the periodic grid signal provides feedback control of the beam position to within a fraction of the period. Using this technique we exposed patterns globally locked to a fiducial grid and reduced local field-stitching errors to a < 1.3 nm. Spatial-phase locking is particularly important for integrated-optical devices that require pattern-placement accuracy within a fraction of the wavelength of light. As an example, Bragg-grating based optical filters were fabricated in silicon-on-insulator waveguides using SPLEBL. The filters were designed to reflect a narrow-range of wavelengths within the communications band near 1550-nm. We patterned the devices in a single lithography step by placing the gratings in the waveguide sidewalls. This design allows apodization of the filter response by lithographically varying the grating depth. Measured transmission spectra show greatly reduced sidelobe levels for apodized devices compared to devices with uniform gratings.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
 
Includes bibliographical references (p. 179-185).
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/29949
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.