Show simple item record

dc.contributor.advisorHenry I. Smith.en_US
dc.contributor.authorHastings, Jeffrey Todd, 1975-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2006-03-24T18:05:42Z
dc.date.available2006-03-24T18:05:42Z
dc.date.copyright2003en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/29949
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.en_US
dc.descriptionIncludes bibliographical references (p. 179-185).en_US
dc.description.abstractScanning electron-beam lithography (SEBL) provides sub-10-nm resolution and arbitrary-pattern generation; however, SEBL's pattern-placement accuracy remains inadequate for future integrated-circuits and integrated-optical devices. Environmental disturbances, system imperfections, charging, and a variety of other factors contribute to pattern-placement inaccuracy. To overcome these limitations, spatial-phase locked electron-beam lithography (SPLEBL) monitors the beam location with respect to a reference grid on the substrate. Phase detection of the periodic grid signal provides feedback control of the beam position to within a fraction of the period. Using this technique we exposed patterns globally locked to a fiducial grid and reduced local field-stitching errors to a < 1.3 nm. Spatial-phase locking is particularly important for integrated-optical devices that require pattern-placement accuracy within a fraction of the wavelength of light. As an example, Bragg-grating based optical filters were fabricated in silicon-on-insulator waveguides using SPLEBL. The filters were designed to reflect a narrow-range of wavelengths within the communications band near 1550-nm. We patterned the devices in a single lithography step by placing the gratings in the waveguide sidewalls. This design allows apodization of the filter response by lithographically varying the grating depth. Measured transmission spectra show greatly reduced sidelobe levels for apodized devices compared to devices with uniform gratings.en_US
dc.description.statementofresponsibilityby Jeffrey Todd Hastings.en_US
dc.format.extent185 p.en_US
dc.format.extent13694367 bytes
dc.format.extent13694272 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleNanometer-precision electron-beam lithography with applications in integrated opticsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc53277140en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record