Show simple item record

dc.contributor.advisorIsaac L. Chuang.en_US
dc.contributor.authorCross, Andrew W. (Andrew William), 1979-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2006-03-24T18:26:33Z
dc.date.available2006-03-24T18:26:33Z
dc.date.copyright2005en_US
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/30175
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.en_US
dc.descriptionIncludes bibliographical references (p. 241-247).en_US
dc.description.abstractFault-tolerance is the cornerstone of practical, large-scale quantum computing, pushed into its prominent position with heroic theoretical efforts. The fault-tolerance threshold, which is the component failure probability below which arbitrarily reliable quantum computation becomes possible, is one standard quality measure of fault-tolerant designs based on recursive simulation. However, there is a gulf between theoretical achievements and the physical reality and complexity of envisioned quantum computing systems. This thesis takes a step toward bridging that gap. We develop a new experimental method for estimating fault-tolerance thresholds that applies to realistic models of quantum computer architectures, and demonstrate this technique numerically. We clarify a central problem for experimental approaches to fault-tolerance evaluation--namely, distinguishing between potentially optimistic pseudo-thresholds and actual thresholds that determine scalability. Next, we create a system architecture model for the trapped-ion quantum computer, discuss potential layouts, and numerically estimate the fault-tolerance threshold for this system when it is constrained to a local layout. Finally, we place the problem of evaluation and synthesis of fault-tolerant quantum computers into a broader framework by considering a software architecture for quantum computer design.en_US
dc.description.statementofresponsibilityby Andrew W. Cross.en_US
dc.format.extent247 p.en_US
dc.format.extent13338513 bytes
dc.format.extent13370932 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSynthesis and evaluation of fault-tolerant quantum computer architecturesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc60678573en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record