MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Collaborative UAV path planning with deceptive strategies

Author(s)
Root, Philip J
Thumbnail
DownloadFull printable version (9.435Mb)
Alternative title
Collaborative Unmanned Aerial Vehicles path planning with deceptive strategies
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Eric Feron.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we propose a strategy for a team of Unmanned Aerial Vehicles (UAVs) to perform reconnaissance of an intended route while operating within aural and visual detection range of threat forces. The advent of Small UAVSs (SUAVs) has fundamentally changed the interaction between the observer and the observed. SUAVs fly at much lower altitudes than their predecessors, and the threat can detect the reconnaissance and react to it. This dynamic between the reconnaissance vehicles and the threat observers requires that we view this scenario within a game theoretic framework. We begin by proposing two discrete optimization techniques, a recursive algorithm and a Mixed Integer Linear Programming (MILP) model, that seek a unique optimal trajectory for a team of SUAVs or agents for a given environment. We then develop a set of heuristics governing the agents' optimal strategy or policy within the formalized game, and we use these heuristics to produce a randomized algorithm that outputs a set of waypoints for each vehicle. Finally, we apply this final algorithm to a team of autonomous rotorcraft to demonstrate that our approach operates flawlessly in real-time environments.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.
 
Includes bibliographical references (p. 87-89).
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/32432
Department
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Aeronautics and Astronautics - Master's degree
  • Aeronautics and Astronautics - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.