dc.contributor.author | Rosales, Rodolfo | en_US |
dc.coverage.temporal | Spring 2003 | en_US |
dc.date.issued | 2003-06 | |
dc.identifier | 18.311-Spring2003 | |
dc.identifier | local: 18.311 | |
dc.identifier | local: IMSCP-MD5-e53584baeed8b7ddda4fe752fcfed66b | |
dc.identifier.uri | http://hdl.handle.net/1721.1/34883 | |
dc.description.abstract | Introduction to fundamental concepts in "continuous" applied mathematics. Extensive use of demonstrational software. Discussion of computational and modelling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world. | en_US |
dc.format.extent | 14882 bytes | en_US |
dc.format.extent | 14430 bytes | en_US |
dc.format.extent | 14366 bytes | en_US |
dc.format.extent | 12087 bytes | en_US |
dc.format.extent | 35978 bytes | en_US |
dc.format.extent | 11808 bytes | en_US |
dc.format.extent | 16656 bytes | en_US |
dc.format.extent | 11 bytes | en_US |
dc.format.extent | 4586 bytes | en_US |
dc.format.extent | 18637 bytes | en_US |
dc.format.extent | 11602 bytes | en_US |
dc.format.extent | 18220 bytes | en_US |
dc.format.extent | 4755 bytes | en_US |
dc.format.extent | 27322 bytes | en_US |
dc.format.extent | 25313 bytes | en_US |
dc.format.extent | 4039 bytes | en_US |
dc.format.extent | 301 bytes | en_US |
dc.format.extent | 354 bytes | en_US |
dc.format.extent | 339 bytes | en_US |
dc.format.extent | 180 bytes | en_US |
dc.format.extent | 285 bytes | en_US |
dc.format.extent | 67 bytes | en_US |
dc.format.extent | 17685 bytes | en_US |
dc.format.extent | 49 bytes | en_US |
dc.format.extent | 143 bytes | en_US |
dc.format.extent | 247 bytes | en_US |
dc.format.extent | 19283 bytes | en_US |
dc.format.extent | 262 bytes | en_US |
dc.format.extent | 51433 bytes | en_US |
dc.format.extent | 263687 bytes | en_US |
dc.format.extent | 501769 bytes | en_US |
dc.format.extent | 283203 bytes | en_US |
dc.format.extent | 522197 bytes | en_US |
dc.format.extent | 441 bytes | en_US |
dc.format.extent | 10533 bytes | en_US |
dc.format.extent | 2516 bytes | en_US |
dc.format.extent | 19362 bytes | en_US |
dc.format.extent | 3327 bytes | en_US |
dc.format.extent | 9874 bytes | en_US |
dc.format.extent | 5515 bytes | en_US |
dc.format.extent | 3399 bytes | en_US |
dc.format.extent | 167750 bytes | en_US |
dc.format.extent | 105553 bytes | en_US |
dc.format.extent | 19283 bytes | en_US |
dc.format.extent | 3486 bytes | en_US |
dc.format.extent | 811 bytes | en_US |
dc.format.extent | 813 bytes | en_US |
dc.format.extent | 830 bytes | en_US |
dc.format.extent | 522 bytes | en_US |
dc.format.extent | 2097 bytes | en_US |
dc.format.extent | 25518 bytes | en_US |
dc.format.extent | 8382 bytes | en_US |
dc.format.extent | 7642 bytes | en_US |
dc.format.extent | 8397 bytes | en_US |
dc.format.extent | 8702 bytes | en_US |
dc.format.extent | 7620 bytes | en_US |
dc.format.extent | 8004 bytes | en_US |
dc.format.extent | 7629 bytes | en_US |
dc.format.extent | 8154 bytes | en_US |
dc.format.extent | 7597 bytes | en_US |
dc.format.extent | 8513 bytes | en_US |
dc.format.extent | 8098 bytes | en_US |
dc.format.extent | 8120 bytes | en_US |
dc.format.extent | 7760 bytes | en_US |
dc.format.extent | 8439 bytes | en_US |
dc.format.extent | 7936 bytes | en_US |
dc.format.extent | 8147 bytes | en_US |
dc.format.extent | 8127 bytes | en_US |
dc.format.extent | 8384 bytes | en_US |
dc.format.extent | 8883 bytes | en_US |
dc.format.extent | 8133 bytes | en_US |
dc.format.extent | 8148 bytes | en_US |
dc.format.extent | 8181 bytes | en_US |
dc.language | en-US | en_US |
dc.rights.uri | Usage Restrictions: This site (c) Massachusetts Institute of Technology 2003. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license"). The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. | en_US |
dc.subject | Nonlinear dynamical systems | en_US |
dc.subject | nonlinear waves | en_US |
dc.subject | diffusion | en_US |
dc.subject | stability | en_US |
dc.subject | characteristics | en_US |
dc.subject | nonlinear steepening | en_US |
dc.subject | breaking and shock formation | en_US |
dc.subject | conservation laws | en_US |
dc.subject | first-order partial differential equations | en_US |
dc.subject | finite differences | en_US |
dc.subject | numerical stability | en_US |
dc.subject | traffic problems | en_US |
dc.subject | flows in rivers | en_US |
dc.subject | internal waves | en_US |
dc.subject | mechanical vibrations | en_US |
dc.title | 18.311 Principles of Applied Mathematics, Spring 2003 | en_US |
dc.title.alternative | Principles of Applied Mathematics | en_US |
dc.type | Learning Object | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |