dc.contributor.author | Melrose, Richard B. | en_US |
dc.coverage.temporal | Fall 2002 | en_US |
dc.date.issued | 2002-12 | |
dc.identifier | 18.155-Fall2002 | |
dc.identifier | local: 18.155 | |
dc.identifier | local: IMSCP-MD5-3bd7e3b588e577cdfc952818b71bab20 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/35774 | |
dc.description.abstract | Fundamental solutions for elliptic, hyperbolic and parabolic differential operators. Method of characteristics. Review of Lebesgue integration. Distributions. Fourier transform. Homogeneous distributions. Asymptotic methods. | en_US |
dc.format.extent | 13221 bytes | en_US |
dc.format.extent | 10898 bytes | en_US |
dc.format.extent | 26274 bytes | en_US |
dc.format.extent | 13429 bytes | en_US |
dc.format.extent | 10655 bytes | en_US |
dc.format.extent | 11 bytes | en_US |
dc.format.extent | 4586 bytes | en_US |
dc.format.extent | 21366 bytes | en_US |
dc.format.extent | 11602 bytes | en_US |
dc.format.extent | 38351 bytes | en_US |
dc.format.extent | 4755 bytes | en_US |
dc.format.extent | 27322 bytes | en_US |
dc.format.extent | 25313 bytes | en_US |
dc.format.extent | 4039 bytes | en_US |
dc.format.extent | 301 bytes | en_US |
dc.format.extent | 354 bytes | en_US |
dc.format.extent | 339 bytes | en_US |
dc.format.extent | 180 bytes | en_US |
dc.format.extent | 285 bytes | en_US |
dc.format.extent | 67 bytes | en_US |
dc.format.extent | 17685 bytes | en_US |
dc.format.extent | 49 bytes | en_US |
dc.format.extent | 143 bytes | en_US |
dc.format.extent | 247 bytes | en_US |
dc.format.extent | 19283 bytes | en_US |
dc.format.extent | 262 bytes | en_US |
dc.format.extent | 244 bytes | en_US |
dc.format.extent | 1216 bytes | en_US |
dc.format.extent | 17534 bytes | en_US |
dc.format.extent | 2022324 bytes | en_US |
dc.format.extent | 145756 bytes | en_US |
dc.format.extent | 224260 bytes | en_US |
dc.format.extent | 205470 bytes | en_US |
dc.format.extent | 318853 bytes | en_US |
dc.format.extent | 209798 bytes | en_US |
dc.format.extent | 196708 bytes | en_US |
dc.format.extent | 202526 bytes | en_US |
dc.format.extent | 318991 bytes | en_US |
dc.format.extent | 179814 bytes | en_US |
dc.format.extent | 191693 bytes | en_US |
dc.format.extent | 250797 bytes | en_US |
dc.format.extent | 257895 bytes | en_US |
dc.format.extent | 47573 bytes | en_US |
dc.format.extent | 61446 bytes | en_US |
dc.format.extent | 61621 bytes | en_US |
dc.format.extent | 52808 bytes | en_US |
dc.format.extent | 63138 bytes | en_US |
dc.format.extent | 19283 bytes | en_US |
dc.format.extent | 3486 bytes | en_US |
dc.format.extent | 811 bytes | en_US |
dc.format.extent | 813 bytes | en_US |
dc.format.extent | 830 bytes | en_US |
dc.format.extent | 492 bytes | en_US |
dc.format.extent | 2097 bytes | en_US |
dc.format.extent | 25862 bytes | en_US |
dc.format.extent | 7055 bytes | en_US |
dc.format.extent | 7638 bytes | en_US |
dc.format.extent | 7060 bytes | en_US |
dc.format.extent | 7616 bytes | en_US |
dc.format.extent | 7635 bytes | en_US |
dc.format.extent | 8105 bytes | en_US |
dc.format.extent | 7637 bytes | en_US |
dc.format.extent | 7667 bytes | en_US |
dc.format.extent | 7081 bytes | en_US |
dc.format.extent | 7649 bytes | en_US |
dc.format.extent | 7646 bytes | en_US |
dc.format.extent | 7606 bytes | en_US |
dc.format.extent | 6947 bytes | en_US |
dc.format.extent | 7649 bytes | en_US |
dc.format.extent | 7649 bytes | en_US |
dc.format.extent | 7639 bytes | en_US |
dc.format.extent | 7640 bytes | en_US |
dc.format.extent | 7617 bytes | en_US |
dc.format.extent | 7648 bytes | en_US |
dc.format.extent | 7650 bytes | en_US |
dc.format.extent | 7643 bytes | en_US |
dc.format.extent | 7641 bytes | en_US |
dc.format.extent | 7606 bytes | en_US |
dc.format.extent | 7131 bytes | en_US |
dc.language | en-US | en_US |
dc.rights.uri | Usage Restrictions: This site (c) Massachusetts Institute of Technology 2003. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license"). The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. | en_US |
dc.subject | elliptic | en_US |
dc.subject | hyperbolic | en_US |
dc.subject | parabolic differential operators | en_US |
dc.subject | Lebesgue integration | en_US |
dc.subject | Distributions | en_US |
dc.subject | Fourier transform | en_US |
dc.subject | Homogeneous distributions | en_US |
dc.subject | Asymptotic methods | en_US |
dc.subject | Differential calculus | en_US |
dc.subject | Differential equations | en_US |
dc.title | 18.155 Differential Analysis, Fall 2002 | en_US |
dc.title.alternative | Differential Analysis | en_US |
dc.type | Learning Object | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |