MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards adaptive and directable control of simulated creatures

Author(s)
Abe, Yeuhi
Thumbnail
DownloadFull printable version (4.386Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jovan Popović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Interactive animation is used ubiquitously for entertainment and for the communication of ideas. Active creatures, such as humans, robots, and animals, are often at the heart of such animation and are required to interact in compelling and lifelike ways with their virtual environment. Physical simulation handles such interaction correctly, with a principled approach that adapts easily to different circumstances, changing environments, and unexpected disturbances. However, developing robust control strategies that result in natural motion of active creatures within physical simulation has proved to be a difficult problem. To address this issue, a new and versatile algorithm for the low-level control of animated characters has been developed and tested. It simplifies the process of creating control strategies by automatically accounting for many parameters of the simulation, including the physical properties of the creature and the contact forces between the creature and the virtual environment. This thesis describes two versions of the algorithm (one fast and one feature-rich) and the experiments conducted to evaluate its performance.
 
(cont.) The results include interactive animations of active creatures manipulating objects and balancing in response to significant disturbances from their virtual environment. The algorithm is shown to be directable, adaptive, and fast and to hold promise for a new generation of interactive simulations that feature lifelike creatures acting with the same fluidity and grace exhibited by natural beings.
 
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 71-77).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/38674
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.