MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduced-Basis Approximation of the Viscosity-Parametrized Incompressible Navier-Stokes Equation: Rigorous A Posteriori Error Bounds

Author(s)
Veroy, K.; Patera, Anthony T.
Thumbnail
DownloadHPCES013.pdf (523.5Kb)
Metadata
Show full item record
Abstract
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic partial differential equations with affine (or approximately affine) parameter dependence. The essential components are (i) rapidly uniformly convergent global reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) offline/online computational procedures — stratagems which decouple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output of interest and associated error bound — depends only on N (typically very small) and the parametric complexity of the problem. In this paper we extend our methodology to the viscosity-parametrized incompressible Navier-Stokes equations. There are two critical new ingredients: first, the now-classical Brezzi-Rappaz-Raviart framework for (here, a posteriori) error analysis of approximations of nonlinear elliptic partial differential equations; and second, offline/online computational procedures for efficient calculation of the "constants" required by the Brezzi-Rappaz-Raviart theory — in particular, rigorous lower and upper bounds for the BabuÅ¡ka inf-sup stability and Sobolev "L⁴-H¹" continuity factors, respectively. Numerical results for a simple square-cavity model problem confirm the rapid convergence of the reduced-basis approximation and the good effectivity of the associated a posteriori error bounds.
Date issued
2004-01
URI
http://hdl.handle.net/1721.1/3890
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
reduced-basis, a posteriori error estimation, output bounds, incompressible Navier-Stokes, elliptic partial differential equations

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.