MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous estimation of cardiac output and arterial resistance from arterial blood pressure using a third-order Windkessel model

Author(s)
Francis, Said Elias
Thumbnail
DownloadFull printable version (20.46Mb)
Alternative title
Estimating cardiac output and total arterial resistance in Windkessel-type models
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
George C. Verghese and Tushar Parlikar.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Intensive Care Units (ICUs) have high impact on the survival of critically-ill patients in hospitals. Recent statistics have shown that only 10% of the 5 million patients admitted to ICUs in the United States die each year. In modern ICUs, the heart's electrical and mechanical activity is routinely monitored using various sensors. Arterial blood pressure (ABP) and heart rate (HR) are the most commonly recorded waveforms which provide key information to the ICU clinical staff. However, clinicians find themselves in many cases unable to determine the causes behind abnormal behavior of the cardiovascular system because they lack frequent measures of cardiac output (CO), the average blood flow out of the left ventricle. CO is monitored via intermittent thermodilution measurements which are highly invasive and only applied to the sickest ICU patients. The lack of frequent CO measurements has encouraged researchers to develop estimation methods for cardiac output from routinely measured arterial blood pressure waveforms. The prospects of estimating cardiac output from minimally-invasive blood pressure measurements has resulted in numerous estimation algorithms, however, there is no consensus on the performance of the algorithms that have been proposed. In this thesis, we investigate the use of a third-order variation of the Windkessel model, which is referred to as the modified Windkessel model. We validate its ability to generate well-behaved proximal and distal pressure waveforms for a given flow waveform and thus characterize the arterial tree. We also develop a model-based CO estimation algorithm which uses central and peripheral blood pressure waveforms to obtain reliable estimates of CO and the total peripheral resistance (TPR). We applied the estimation algorithm to a porcine data set.
 
(cont.) The results of our estimation algorithm are promising: the weighted-mean root-mean-squared-normalized-error (RMSNE) is about 13.8% over four porcine records. In each porcine experiment, intravenous drug infusions were used to vary CO, ABP, and HR over wide ranges. Our results suggest that the modified Windkessel model is a good representation of the arterial tree and that the estimation algorithm yields reliable estimates of CO and TPR under various hemodynamic conditions.
 
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 85-89).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/41641
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.