Show simple item record

dc.contributor.advisorGeorge C. Verghese and Tushar Parlikar.en_US
dc.contributor.authorFrancis, Said Eliasen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-05-19T16:04:20Z
dc.date.available2008-05-19T16:04:20Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/41641
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 85-89).en_US
dc.description.abstractIntensive Care Units (ICUs) have high impact on the survival of critically-ill patients in hospitals. Recent statistics have shown that only 10% of the 5 million patients admitted to ICUs in the United States die each year. In modern ICUs, the heart's electrical and mechanical activity is routinely monitored using various sensors. Arterial blood pressure (ABP) and heart rate (HR) are the most commonly recorded waveforms which provide key information to the ICU clinical staff. However, clinicians find themselves in many cases unable to determine the causes behind abnormal behavior of the cardiovascular system because they lack frequent measures of cardiac output (CO), the average blood flow out of the left ventricle. CO is monitored via intermittent thermodilution measurements which are highly invasive and only applied to the sickest ICU patients. The lack of frequent CO measurements has encouraged researchers to develop estimation methods for cardiac output from routinely measured arterial blood pressure waveforms. The prospects of estimating cardiac output from minimally-invasive blood pressure measurements has resulted in numerous estimation algorithms, however, there is no consensus on the performance of the algorithms that have been proposed. In this thesis, we investigate the use of a third-order variation of the Windkessel model, which is referred to as the modified Windkessel model. We validate its ability to generate well-behaved proximal and distal pressure waveforms for a given flow waveform and thus characterize the arterial tree. We also develop a model-based CO estimation algorithm which uses central and peripheral blood pressure waveforms to obtain reliable estimates of CO and the total peripheral resistance (TPR). We applied the estimation algorithm to a porcine data set.en_US
dc.description.abstract(cont.) The results of our estimation algorithm are promising: the weighted-mean root-mean-squared-normalized-error (RMSNE) is about 13.8% over four porcine records. In each porcine experiment, intravenous drug infusions were used to vary CO, ABP, and HR over wide ranges. Our results suggest that the modified Windkessel model is a good representation of the arterial tree and that the estimation algorithm yields reliable estimates of CO and TPR under various hemodynamic conditions.en_US
dc.description.statementofresponsibilityby Said Elias Francis.en_US
dc.format.extent89 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleContinuous estimation of cardiac output and arterial resistance from arterial blood pressure using a third-order Windkessel modelen_US
dc.title.alternativeEstimating cardiac output and total arterial resistance in Windkessel-type modelsen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc219692185en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record