Show simple item record

dc.contributor.advisorLeslie A. Kolodziejski and Eugene A. Fitzgerald.en_US
dc.contributor.authorWilliams, Ryan Danielen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2008-09-02T17:50:51Z
dc.date.available2008-09-02T17:50:51Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42025
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated with passive waveguides using the asymmetric twin waveguide technique and the SOAs are placed in a Mach-Zehnder interferometer (MZI) configuration. By sending in high-intensity pulses, the gain characteristics, phase-shifting, and refractive indices of the SOA can be altered, creating constructive or deconstructive interference at the MZI output. Boolean logic and wavelength conversion can be achieved using this technique, building blocks for optical switching and signal regeneration. The fabrication of these devices is complex and the fabrication of two generations of devices is described in this thesis, including optimization of the mask design, photolithography, etching, and backside processing techniques. Testing and characterization of the active and passive components is also reported, confirming gain and emission at 1550 nm for the SOAs, as well as verifying evanescent coupling between the active and passive waveguides. In addition to the vertical integration of photonic waveguides, Esaki tunnel junctions are investigated for vertical electronic integration. Quantum dot formation and growth via molecular beam epitaxy is investigated for emission at the technologically important wavelength of 1310 nm. The effect of indium incorporation on tunnel junctions is investigated. The tunnel junctions are used to epitaxially link multiple quantum dot active regions in series and lasers are designed, fabricated, and tested.en_US
dc.description.statementofresponsibilityby Ryan Daniel Williams.en_US
dc.format.extent164 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titlePhotonic integrated circuits for optical logic applicationsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc228302738en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record