MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reverse logistics and large-scale material recovery from electronics waste

Author(s)
Krones, Jonathan Seth
Thumbnail
DownloadFull printable version (5.679Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Randolph E. Kirchain, Jr.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Waste consolidation is a crucial step in the development of cost-effective, nation-wide material reclamation networks. This thesis project investigates typical and conformational tendencies of a hypothetical end-of-life electronics recycling system based in the United States. Optimal waste processor configurations, along with cost drivers and sensitivities are identified using a simple reverse logistics linear programming model. The experimental procedure entails varying the model scenario based on: type of material being recycled, the properties of current recycling and consolidation practices, and an extrapolation of current trends into the future. The transition from a decentralized to a centralized recycling network is shown to be dependent on the balance between transportation costs and facility costs, with the latter being a much more important cost consideration than the former. Additionally, this project sets the stage for a great deal of future work to ensure the profitability of domestic e-waste recycling systems.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
 
Includes bibliographical references (p. 107-111).
 
Date issued
2007
URI
http://hdl.handle.net/1721.1/42994
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.