MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Critical study on the development and design of an automated multicapillary electrophoresis instrument with collection of mutant DNA fractions using Constant Denaturant Capillary Electrophoresis (CDCE)

Author(s)
Kao, Leslie E
Thumbnail
DownloadFull printable version (13.41Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
William G. Thilly.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Constant Denaturant Capillary Electrophoresis (CDCE) is a separation tool based on the cooperative melting equilibrium principle that is used to detect mutations as low as of 106. This technique has already demonstrated invaluable clinical applications in correlated preventative prognosis, medical evaluations, and interventions. Accordingly, there is a high demand to utilize CDCE as a cost-effective, high-throughput screening and separation technique to detect mutations in large DNA pooled samples. The aim of this thesis is twofold: to describe DNA separation theories and technologies, as well as CDCE separation theory and applications; and to describe and analyze the design of and modifications applied to an integrated automated multicapillary instrument with collection of mutant fractions by using CDCE to meet the stringent requirements for detecting low-frequency mutations in pooled samples from large populations. The modified SCE2410 24-capillary DNA Sequencer, HTMS Model (High-throughput Mutational Spectrometer) by Q. Li et al. has been identified as the instrument that best meets these requirements. This thesis will analyze this integrated HTMS instrumental design and modifications involving the multicapillary cartridge, the optical detection device, six independently controlled solid-state thermal heaters for the thermostat array in the CDCE temperature control system, and automated matrix replacement and fraction collection. The overall HTMS system design has led to results of high optical sensitivity (1 x 10-12M fluorescence in detection limits), precise and stable temperature control (± 0.010C), and automated sample delivery, injection, matrix replacement, and fraction collection.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
 
Includes bibliographical references (leaves 69-76).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43013
Department
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Bachelor's degree
  • Mechanical Engineering - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.