Show simple item record

dc.contributor.advisorStanley R. Hart.en_US
dc.contributor.authorJackson, Matthew G. (Matthew Gerald)en_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2008-11-07T19:10:03Z
dc.date.available2008-11-07T19:10:03Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/43157
dc.descriptionThesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008.en_US
dc.descriptionIncludes bibliographical references (p. 135-140).en_US
dc.description.abstractChapter 1 presents the first published measurements of Sr-isotope variability in olivine-hosted melt inclusions. Melt inclusions in just two Samoan basalt hand samples exhibit most of the total Sr-isotope variability observed in Samoan lavas. Chapter 3 deals with the largest possible scales of mantle heterogeneity, and presents the highest magmatic 3He/4He (33.8 times atmospheric) discovered in Samoa and the southern hemisphere. Along with Samoa, the highest 3He/4He sample from each southern hemisphere high 3He/4He hotspot exhibits lower 143Nd/144Nd ratios than their counterparts in the northern hemisphere. Chapter 2 presents geochemical data for a suite of unusually enriched Samoan lavas. These highly enriched Samoan lavas have the highest 87Sr/86Sr values (0.72163) measured in oceanic hotspot lavas to date, and along with trace element ratios (low Ce/Pb and Nb/U ratios), provide a strong case for ancient recycled sediment in the Samoan mantle. Chapter 4 explores whether the eclogitic and peridotitic portions of ancient subducted oceanic plates can explain the anomalous titanium, tantalum and niobium (TITAN) enrichment in high 3He/4He ocean island basalts (OIBs). The peridotitic portion of ancient subducted plates can contribute high 3He/4He and, after processing in subduction zones, a refractory, rutile-bearing eclogite may contribute the positive TITAN anomalies.en_US
dc.description.statementofresponsibilityby Matthew G. Jackson.en_US
dc.format.extent149 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectJoint Program in Oceanography.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshSubmarine geologyen_US
dc.subject.lcshOphiolitesen_US
dc.titleDismantling the deep earth : geochemical constraints from hotspot lavas for the origin and lengthscales of mantle heterogeneityen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentJoint Program in Oceanographyen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc248620722en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record