MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combinatorics of determinantal identities

Author(s)
Konvalinka, Matjaž
Thumbnail
DownloadFull printable version (882.5Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Igor Pak.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/43790 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we apply combinatorial means for proving and generalizing classical determinantal identities. In Chapter 1, we present some historical background and discuss the algebraic framework we employ throughout the thesis. In Chapter 2, we construct a fundamental bijection between certain monomials that proves crucial for most of the results that follow. Chapter 3 studies the first, and possibly the best-known, determinantal identity, the matrix inverse formula, both in the commutative case and in some non-commutative settings (Cartier-Foata variables, right-quantum variables, and their weighted generalizations). We give linear-algebraic and (new) bijective proofs; the latter also give an extension of the Jacobi ratio theorem. Chapter 4 is dedicated to the celebrated MacMahon master theorem. We present numerous generalizations and applications. In Chapter 5, we study another important result, Sylvester's determinantal identity. We not only generalize it to non-commutative cases, we also find a surprising extension that also generalizes the master theorem. Chapter 6 has a slightly different, representation theory flavor; it involves representations of the symmetric group, and also Hecke algebras and their characters. We extend a result on immanants due to Goulden and Jackson to a quantum setting, and reprove certain combinatorial interpretations of the characters of Hecke algebras due to Ram and Remmel.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2008.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Includes bibliographical references (p. 125-129).
 
Date issued
2008
URI
http://dspace.mit.edu/handle/1721.1/43790
http://hdl.handle.net/1721.1/43790
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.