MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Appropriate technology water treatment processes for MaeLa Temporary Shelter, Thailand

Author(s)
Vater, Katherine Ann
Thumbnail
DownloadFull printable version (13.81Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Peter Shanahan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis recommends the use of horizontal-flow roughing filters to treat spring water of variable annual quality in MaeLa Temporary Shelter, Thailand. The public drinking water system for 45,000 refugees is overseen by Aide Medicale Intemacionale, with which this project was conducted. Half the drinking water for the camp is provided by thirteen springs. The volume and turbidity of these springs varies annually, correlating with the rainy and dry seasons. Treating the varying turbidity and volume at these sources so that the water can be effectively disinfected is the treatment goal. Available materials and operation and maintenance capabilities are also design parameters. Horizontal-flow roughing filtration was determined to fit these parameters and a design with two equivalent filters operating in parallel is recommended. One important feature of the filters is baffles that dictate the flow path of water through the filter. A second feature is an outflow at the top of the filter that will maintain a constant water volume in the filter. The feasibility of the design is based on flow tests and turbidity measurements taken on site as well as weekly flow rates and turbidities for 2007 provided by AMI. The requirements for mechanical regeneration of the filter are also determined.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008.
 
Includes bibliographical references (p. 71-74).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43875
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.