MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The folding Roboscooter : structural analysis for an electric scooter used in urban conditions

Author(s)
Petron, Arthur J
Thumbnail
DownloadFull printable version (6.084Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
William J. Mitchell and David Wallace.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Roboscooter is an electric, folding scooter designed for use in dense urban areas where congestion and pollution is a problem. Already heavily used in most European cities, scooters provide cheaper, faster transportation than cars, but parking can still be difficult. By allowing the scooter to fold - reducing its footprint by more than half- and by implementing a one-way user share model that does not require scooter ownership, many of the current issues involving transportation in dense urban areas can be addressed. As an electric vehicle, the Roboscooter's range is limited by the amount of energy it uses during travel and the current technological limitations on battery energy density. Analysis of the elements of the scooter that experience the most stress can give insights on ways to redesign key structural elements in order to make them lighter while maintaining the strength necessary for long life in a consumer environment. The structural elements that make up the main body of the scooter are subject to cyclic fatigue due to riding conditions such as bumps, which aside from decreasing the life of structural elements, also cause the largest forces on the scooter's frame. The Roboscooter was analyzed under maximum load conditions to determine the safety factor of two of the frame components that experience the most stress: the front fork and the main folding pivot axle. Both elements were found to have a safety factor of two in their current design configurations, implying that design changes will be needed to reduce the overall weight.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
 
Includes bibliographical references (leaf 19).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45293
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.