MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A data mining approach for acoustic diagnosis of cardiopulmonary disease

Author(s)
Flietstra, Bryan C
Thumbnail
DownloadFull printable version (47.90Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Natasha Markuzon and Roy Welsch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Variations in training and individual doctor's listening skills make diagnosing a patient via stethoscope based auscultation problematic. Doctors have now turned to more advanced devices such as x-rays and computed tomography (CT) scans to make diagnoses. However, recent advances in lung sound analysis techniques allow for the auscultation to be performed with an array of microphones, which send the lung sounds to a computer for processing. The computer automatically identifies adventitious sounds using time expanded waveform analysis and allows for a more precise auscultation. We investigate three data mining techniques in order to diagnose a patient based solely on the sounds heard within the chest by a "smart" stethoscope. We achieve excellent recognition performance by using k nearest neighbors, neural networks, and support vector machines to make classifications in pair-wise comparisons. We also extend the research to a multi-class scenario and are able to separate patients with interstitial pulmonary fibrosis with 80% accuracy. Adding clinical data also improves recognition performance. Our results show that performing computerized lung auscultation offers a low-cost, non-invasive diagnostic procedure that gives doctors better clinical utility especially in situations when x-rays and CT scans are not available.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2008.
 
Includes bibliographical references (p. 107-111).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45400
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.